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1 Introduction

Innovation diffusion is a fundamental process that enables the spread of new
technologies, products, and ideas. Typically, the process starts with a small
seed of people known also as early adopters or innovators. These individuals
are less influenced by the opinions and actions of others within their network,
therefore are often the first to see the potential of new technology and are
motivated to adopt it even if it is unproven or untested. This early adoption
creates local positive externalities, which encourage other agents to adopt the
innovation. One popular diffusion model is the bootstrap percolation dynamics,
which originated in physics and has been since applied to a wide range of fields,
from epidemiology to marketing (see the related literature). In this model,
agents adopt (for good) the innovation if a certain threshold of their neighbors
has already adopted it (the threshold is either a fixed number of neighbors or,
as in our model, a proportion of them). The process continues, until reaching a
steady state. If in this steady state, the innovation was adopted by the entire
society, we say that the seed is contagious or percolates.

This can be the case when adopting a new technology or product is costly or
requires effort. For example, switching a cellular provider is costly, but can have
internal benefits (better customer service, better reception) and local positive
externalities in case calls and texts to users using another provider are more
expensive than to users using the same one. Thus, even an agent reluctant to
switch a provider at first might do so, once enough of his contacts switch a
provider, to reduce his bills. This effect, along with social learning regarding
the quality of the new provider, was shown to exist in Hu et al. (2019) and
typically characterizes high-tech products. In other cases, the adoption process
is driven by “word-of-mouth” marketing (Narayan et al., 2011; Confente, 2015;
Iyengar et al., 2011) or their combination.

An important marketing question is how many early adopters are needed in
order for an innovation to be adopted by everyone, assuming that one has the
ability to “target” individuals and determine the seed. In other words, what
is the size of the smallest contagious seed? The answer depends strongly on
the network structure and was answered in the literature for some particular
cases. For example, for a star-shaped network, one innovator (the central) is
always enough, regardless of the number of agents. Chalupa et al. (1979) (and
the subsequent physics-related literature) answered this question mainly for
grids, Chang and Lyuu (2010) and Ackerman et al. (2010) focused on networks
with a fixed size and different local thresholds, whereas Angel and Kolesnik
(2018) and Guggiola and Semerjian (2015) studied the minimal contagious seed
for random graphs. Note that unlike other models of opinion dynamics and
reaching a consensus (such as the ones presented in Rosenberg et al. (2009) and
Bikhchandani et al. (2021)), we do not assume that there is an underlying true
state to be learned or a “correct” action to be taken. The only driving force in
our model is the externalities due to peer pressure.

While some of the previous studies can be applied to real-world social net-
works, these frameworks do not take into account their unique structure. Social
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networks often exhibit a dynamic nature, in which new agents are constantly
added to the network through some attachment mechanism. For example, pref-
erential attachment (Barabási and Albert, 1999; Albert and Barabási, 2002).
leads to a particular structure, known as a scale-free topology, in which the
degree distribution converges to a power-law distribution (although there is an
ongoing debate regarding the exact distribution, see Broido and Clauset (2019);
Stumpf and Porter (2012) and Holme (2019)). In addition to social networks,
this degree distribution approximates many other real-life networks, such as
power grids, computer networks, and citations of research papers (see Figure 24
and Table 1 in Dorogovtsev and Mendes (2002) for details).

In this paper, we exploit the particular structure of growing networks
with converging degree distribution (such as the ones presented in Krapivsky
and Krioukov (2008); Barabási and Albert (1999); Falkenberg et al. (2020),
and Choromański et al. (2013). See also the review paper by Dorogovtsev
and Mendes (2002)) and provide a lower and upper bound on the size of a
contagious seed for bootstrap percolation dynamics with any majority threshold
(similarly to Amini et al. (2013), who assume a fixed threshold). Our main result
(Theorem 2) is that the size of the contagious seed can be bounded from below
by a linear function of the size of the population, where the linearity coefficient is
determined by the degree distribution. We conclude that outside of knife-edge
cases like the star-shaped network, it is impossible to get contagion without
seeding a significant fraction of the population.

This impossibility result shows the resilience of networks to being overtaken
by bootstrap percolation and highlights the importance of a sufficiently large
seed for successful innovation diffusion. Our findings have implications for in-
dustries and policymakers looking to understand how to accelerate technology
adoption and diffusion in real-world social networks, and in general, in planning
marketing campaigns (see also Akbarpour et al. (2020) on the added value of
just a few more seeds). For example, our results suggest that targeted seed-
ing strategies, such as identifying and leveraging well-connected early adopters
(Demange, 2017, 2018), may be less effective than mass marketing campaigns
regarding seed size. Furthermore, our work could lay the path to the develop-
ment of more accurate models of innovation diffusion that take into account the
underlying network structure. Overall, our study offers a better understanding
of the dynamics of innovation diffusion in scale-free networks, with potential
applications in fields such as marketing, public health, and social policy.

Structure of the paper. This introduction is followed by a discussion of
the related literature. In Section 2 we describe the model and the main re-
sults. The proofs are presented in Sections 3, 4, and 5. In Section 6 we study
tightness of the bound in general and for scale-free networks through computer
simulations, followed by a comparison of majority and minority dynamics (Sec-
tion 6.3). We show that there is a discontinuity in the lower bound when the
required fraction of neighbors needed for activation changes from slightly less
than 50% to 50%. The discussion in Section 7 concludes the paper.
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1.1 Related Literature

Bootstrap percolation was first presented in Chalupa et al. (1979) in the context
of solid-state physics and was studied in different fields such as mathematics,
computer science, marketing, communication, and epidemiology (see for exam-
ple Drakopoulos et al. (2014); Freund et al. (2018); Guggiola and Semerjian
(2015); Manshadi et al. (2020); Garbe et al. (2018); Berger (2001) and the refer-
ences within, especially those in Angel and Kolesnik (2018)). In all these stud-
ies, a seed of activated vertices influences their neighbors and possibly activates
them too, until a steady state (in some sense) is reached. The main differ-
ences, that emerge from the particular application of the model are regarding
the selection of the seed set (is it randomly chosen or not), the structure of the
graph (Erdős–Rényi, regular, scale-free, and so on), the law of infection (most
commonly: is a vertex activated because an absolute number of its neighbors is
active, or because a certain fraction of its neighbors is active), the percolation
objective (activate the entire network or just a fraction of it) and the persistence
of the seed (can active vertices become inactive or not).

In the economic context, the model was applied to study the collapse cascade
financial institutes (Kempe et al., 2003; Elliott et al., 2014; Amini and Minca,
2016; Amini et al., 2016; Chen, 2009; Gai and Kapadia, 2010; Demange, 2018),
risk in supply-chains (Li et al., 2020), and “word-of-mouth” marketing theoret-
ically (Goel et al. (2016); Freund et al. (2018); Manshadi et al. (2020) and the
references within) and empirically (Hu et al., 2019; Iyengar et al., 2011). When
the vertices represent individuals, such as in marketing or innovation diffusion, a
plausible assumption is that the structure of the network is a scale-free network
(Albert and Barabási, 2002), which naturally emerges when new individuals are
added to the network and connected to existing ones through the preferential
attachment model (another possibility is that connections depend also on their
real-life distance, see Gao et al. (2015)).

In this paper, we study propagation through scale-free networks (more gen-
erally: W1-converging networks, see Definition 1) via the bootstrap percolation
dynamics with a fractional threshold and the objective of reaching the entire
population. We show that W1-converging networks are decentralized enough,
so a small seed is not enough to activate the entire network. We also provide
an upper bound for growing networks through some attachment process (Defi-
nition 2) which improves previously known bounds and, in addition, present a
novel characterization of the contagious seed set. For scale-free networks, our
bound shows that at least 1% of the network must be chosen as the initial seed
(and any set which is sub-linear in the size of the network is not enough), and at
most 25%−50% of the network is needed, depending on the exact parameters of
the distribution. Our simulation shows that the true size of the seed is roughly
10% of the network.

Previously, bootstrap percolation on scale-free networks was studied mainly
with an absolute threshold (say, three, as in Amini and Fountoulakis (2012)).
There it is shown that the seed set can be sub-linear (see also Freund et al.
(2018)) when it is optimally chosen. On the contrary, when the seed is randomly
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chosen, a sublinear portion of the network is no longer enough (Amini et al.,
2013)).

2 Model and Results

We consider innovation diffusion in a network using the bootstrap percolation
dynamics with threshold ρ ∈ [0, 1). A social network is a finite undirected simple
graph G = (V,E), where V is the set of n agents (vertices) and E ⊆ V × V
is the set of edges. The set of neighbors of agent v is denoted Nv and the
degree is dv = |Nv|. The cumulative distribution function (CDF) of the degrees
F : Z+ → [0, 1] is defined to be F (d) = 1

n |{v : dv ≤ d}|. Finally, ∆1(N) is defined
to be the space of all finite-expectation probability measures on N = {1, 2, . . .},
so F ∈ ∆1(N).

A certain innovation is introduced and an agent can adopt it (then he is
activated or infected (Garbe et al., 2018)) or not. At time t = 0, a set A0 ⊂ V
of agents is activated. These agents are called seeds and A0 is called the seed
set. Those seeds stick to the innovation thereafter regardless of what others do.
The other agents choose between the two alternatives every day (t = 1, 2, . . .).
An inactive agent adopts the new technology if and only if he sees that strictly
more than a fraction ρ of his neighbors were activated. In this case, we say that
the agent sees that a ρ-majority of its neighbors were activated. Formally, the
sets A0 ⊂ A1 ⊂ · · · of active agents at times t = 0, 1, . . . are defined1 recursively
by

At+1 = At ∪ {v ∈ V : |Nv ∩At| > ρdv}.

Let A∞ := ⟨A0, G⟩ρ :=
⋃∞

t=0 At. When the graph G is finite there exists t0
such that At = A∞, for all t ≥ t0. If A∞ = V , A0 is said to be ρ-contagious
(or percolates). When ρ is clear from the context, we may omit it saying just
contagious. Our goal is to characterize the size of the smallest contagious seed,
denoted by hρ(G).

Figure 1 depicts the dynamics for ρ = 0.5, where the white vertices are
activate (At) and the black are inactive (Āt := V \At). It is easy to verify that
h0.5(G) = 2 in this example.

Our main results are upper and lower bounds on hρ(G) in terms of the distri-
bution of the degrees of the agents of G. The first main result is a lower bound
that applies to any finite network. Our result relies on the entire distribution of
the degrees of the network, in contrast to existing results (such as Chang and
Lyuu (2010)) that rely only on some statistics of that distribution (such as the
maximal degree).

1In principle, we could allow active agents to become inactive again by postulating v ∈ At+1

if and only if v ∈ A0, or |Nv ∩At| > ρdv , or |Nv ∩At| = ρdv and v ∈ At. The two definitions
are equivalent since the seeds never become inactive, and by induction on t, any agent that
becomes active at time t remains active forever.
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t = 0 t = 1 t = 2

Figure 1: An example of the dynamics with a seed of three (white) vertices for
ρ = 0.5. At time t = 3, the last black vertex activates so A3 = V , and therefore,
the seed is contagious.

Theorem 1. There exists α : ∆1(N) → (0, 1] such that for every ρ ≥ 1
2 , n ∈ N,

and network G with n agents and degree distribution FG,

hρ(G) ≥ α(FG)n.

The function α is given a closed-form expression in Section 3. Our α works
for ρ = 1

2 , and therefore, for ρ > 1
2 as well. It would be interesting to find larger

lower bounds αρ that depend on ρ and also bounds that take into account agent-
dependent thresholds, i.e., different ρv ≥ 0.5 for each v ∈ V , as in Ackerman
et al. (2010); Chang and Lyuu (2010).

Despite its appearance, the bound in Theorem 1 is not necessarily linear in
n, since α(FG) may tend to 0 for larger and larger networks. For example, for
the complete network, Kn, we have α(FKn) =

1
n+1 , so our bound is vacuous.

Our second main result, Theorem 2, provides conditions on a sequence of
networks {Gn}∞n=1 under which the sequence of coefficients α(FGn

) converges,
which ensures that the lower bound on hρ(Gn) is linear in n. The following
definition sets these conditions.

Definition 1. A family of networks (Gn = (Vn, En))n∈N of sizes |Vn| = n
with Fn being the CDF of the degrees of Gn is W1-converging if there exists a
distribution on N with CDF F such that:

1. F is the pointwise limit of Fn, i.e. Fn(d) −−−−→
n→∞

F (d), for every d ∈ N.

2. The average degree of Fn converges to the average degree of F , i.e. E(Fn) −−−−→
n→∞

E(F ), where E(F ) :=
∫
x dF (x).

Theorem 2. Let (Gn)n∈N be an W1-converging sequence of networks with Fn

being the CDF of the degrees of Gn and F their limit distribution. If E(F ) < ∞
then hρ(Gn) is linear in n, that is, there exists α > 0 such that hρ(Gn) ≥ αn,
for all ρ ≥ 0.5.

Definition 1 is equivalent to saying that Fn → F in L1, or that dFn → dF in
the 1-Wasserstein metric2. In fact, the proof of Theorem 2 is through showing
that α(F ) is continuous w.r.t. the 1-Wasserstein metric.

The finiteness of E(F ) is essential for the result to hold. Consider a process
of adding agents to a network, such that the degree distribution converges to

2See Theorem 6.9 on Page 108 in Villani et al. (2009).
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F with E(F ) = ∞. Very informally, this implies that during this process, very
often we encounter agents with high degrees. These agents are influential, and
including them in the seed reduces its size significantly.

In addition, note that the pointwise convergence of Fn → F is not enough,
and as required in Definition 1, the average degree must converge too: E(Fn) →
E(F ). For example, in a star-shaped network with n agents, the limit of Fn

is F := 1[1,∞) and E(F ) = 1, while E(Fn) = 2n−1
n → 2. Indeed, in this case,

hρ(Gn) = 1 which is not linear in n.
An interesting class of W1-converging networks is the class of preferential

attachment networks (Albert and Barabási, 2002; Dorogovtsev and Mendes,
2002). These networks have the feature that agents are constantly added to the
network and connected to existing agents according to some rules. In many of
the leading models of preferential attachment networks, the construction starts
with a certain network of sizem0 and then each new agent is connected to a fixed
number m ≤ m0 of existing ones. We call networks with the latter property
(m0,m)-attachment networks.

Definition 2. An (m0,m)-attachment network is a network of size at least m0

whose agents can be ordered v1, v2, . . . such that for every l > m0 the degree of
vl in the sub-network induced by {v1, . . . , vl} is equal to m.

For example, in the model of Barabási and Albert (1999), each new agent is
connected to an existing one with probability proportional to the latter’s degree.
The Barabási-Albert Model results in a network where the limiting probability
density function (PDF) of the degrees is proportional to d−3. A generalization
of this attachment rule yields more general scale-free networks, networks where
there exists γ > 2 such that the limiting PDF is asymptotically proportional to
d−γ , for large d. See, for example, Dorogovtsev and Mendes (2002) who also
identify the scale-free property and the value of γ in several real-life networks.

Theorem 3 provides an upper bound on hρ(G). This upper bound applies
only to attachment networks. We show that for attachment networks, both of
the following sets of agents are contagious: the m0 initial agents plus the set of
all agents of degree either at least m/ρ or at most m/(1− ρ).

Theorem 3. Fix ρ ≥ 0. For any (m0,m)-attachment network G with n agents
and degree CDF F , we have

hρ(G) ≤ m0 +min{1− F (⌈m
ρ − 1⌉), F ( m

1−ρ )}n. (1)

The proof of Theorem 3 utilizes an idea from Morris (2000) which allows an
alternative characterizes hρ(G). The characterization relates contagious sets to
partial orderings of the agents3 (Proposition 1).

Theorem 3 implies that if G1 ⊂ G2 ⊂ · · · is a family of networks gener-
ated through a (m0,m)-attachment process with limiting degree distribution

3The partial ordering that corresponds to the smallest contagious set is an object of interest
by itself. It can be thought of as an ordinal measure of centrality. Further investigating this
point is an interesting direction for future research.
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proportional to d−3 (as in Barabási and Albert (1999)), then

lim sup
m→∞

lim sup
n→∞

hρ(Gn)/n ≤ ρ2.

In the case of ρ = 1
2 , this upper bound is smaller than the general upper bound

h 1
2
(G) ≤ ⌈|V (G)|/2⌉, which is attained, e.g., by the complete and the line graphs

(see Ackerman et al. (2010)).

3 Proof of Theorem 1

Our proof relies on the observation that as the innovation spreads in the network,
the number of “disagreements” between neighboring agents decreases. Formally,
the boundary (also known as the set of discord) of a set of agents A ⊂ V is
defined as the set of edges connecting agents in A with agents in Ā, denoted
∂A = {(v1, v2) ∈ E|v1 ∈ A, v2 ∈ Ā}.

At each time period t ≥ 0, each agent in At+1 \ At has more neighbors in
At than outside of it, so when it is activated, the size of the boundary strictly
decreases. More precisely, an agent v is activated if and only if x of its neighbors
are active, with x > ρdv (and since xmust be an integer, x ≥ ⌊ρdv⌋+1). The net
change in the size of the boundary due to its activation is ∆v := (dv − x)− x ≤
dv − 2⌊ρdv⌋ − 2 ≤ −1. It follows that if A is ρ-contagious, then

|∂A| ≥
∑
v/∈A

(2 + 2⌊ρdv⌋ − dv) ≥ n− |A|. (2)

Since hρ(G) is non-decreasing in ρ, in the rest of the proof we assume w.l.o.g,
that ρ = 1

2 . Let G = (V,E) be a network with n agents and degree distribu-

tion CDF F : Z+ → [0, 1]. We denote by F̂ : R+ → [0, 1] the piecewise linear
continuation of F to R+ defined by

F̂ (x) := (1− (x− ⌊x⌋))F (⌊x⌋) + (x− ⌊x⌋)F (⌈x⌉). (3)

For A ⊂ V , let d(A) be the upper 1
n |A|-quantile F̂ defined as

d(A) := min{x : 1− F̂ (x) = 1
n |A|}.

Rename the agents in non-increasing order of degrees so, dv1 ≥ · · · ≥ dvn . Note
that

1
n

|A|∑
i=1

dvi =

∫ ∞

d(A)

⌈x⌉ dF̂ (x).

Therefore,

1
n |∂A| ≤

1

n

∑
v∈A

dv ≤ 1

n

|A|∑
i=1

dvi =

∫ ∞

d(A)

⌈x⌉ dF̂ (x).

8



Suppose that A is contagious, then, by Eq. (2) and since 1
n |A| = 1−F̂ (d(A)),

1
n |∂A| ≥ F̂ (d(A)).

By continuity, there exists a d∗ such that

F̂ (d∗) =

∫ ∞

d∗

⌈x⌉ dF̂ (x). (4)

Moreover, by monotonicity, F̂ (d∗) is uniquely defined. Defining α(F ) := 1 −
F̂ (d∗) completes the proof of Theorem 1.

4 Proof of Theorem 2

Let {Gn}∞n=1 be a W1-converging sequence of networks, and let {Fn}∞n=1 be
their respective degree CDF and F the limiting CDF. By Theorem 1 and since
α(F ) > 0, it is sufficient to show that limn→∞ α(Fn) = α(F ).

Let F̂ (respectively F̂n) be the piece-wise linear continuation of F (respec-

tively Fn) as in Eq. (3), and denote by f̂ (respectively f̂n) the PDF of F̂ (respec-
tively F̂n). Since Fn → F , we also have F̂n → F̂ uniformly, as Fn is bounded

and monotonic. Similarly, f̂n → f̂ almost everywhere. For each n, denote by
dn the solution of Eq. (4) with respect to F̂n.

We first show that

lim
n→∞

∣∣∣∣F̂ (dn)−
∫ ∞

dn

⌈x⌉ dF̂ (x)

∣∣∣∣ = 0. (5)

Indeed, for every n,∣∣∣∣F̂ (dn)−
∫ ∞

dn

⌈x⌉ dF̂ (x)

∣∣∣∣ ≤∣∣∣F̂ (dn)− F̂n(dn)
∣∣∣+∣∣∣∣F̂n(dn)−

∫ ∞

dn

⌈x⌉ dF̂n(x)

∣∣∣∣+∣∣∣∣∫ ∞

dn

⌈x⌉ dF̂n(x)−
∫ ∞

dn

⌈x⌉ dF̂ (x)

∣∣∣∣ ≤
∥F̂ − F̂n∥∞ + 0 +

∫ ∞

0

(x+ 1)|f̂(x)− f̂n(x)|dx
n→∞−−−−→ 0.

Where the last term converges to 0 from Lebesgue’s dominated convergence
theorem.

Equation (5) implies that any partial limit of dn solves Eq. (4) with respect
to F̂ , and moreover that dn is bounded as the set of solutions to this equation
is bounded. Lastly, let d∞ be a partial limit of dn. We have

|α(F̂n)−α(F̂ )| = |F̂ (d∞)−F̂n(dn)| = |F̂ (d∞)−F̂ (dn)|+|F̂n(dn)−F̂ (dn)|
n→∞−−−−→ 0,

where the first term converges to 0 from the continuity of F̂ , and the proof is
complete.
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5 Proof of Theorem 3

To prove Theorem 3 we utilize a characterization of minimal contagious from
Morris (2000). An acyclic orientation of an (undirected) graph G = (V,E) is a

directed acyclic graph D = (V, E⃗) such that the mapping −→vu 7→ vu is a bijection

from E⃗ to E. We denote the set of all acyclic orientations4 of G by AO(G). For
every D ∈ AO(G) and every ρ ∈ [0, 1], consider the set

Λρ(D) := {v ∈ V : (1− ρ)dinv ≤ ρdoutv },

where dinv and doutv denote the in- and out- degrees of v in D respectively. The
following two Lemmas provide a characterization of minimal contagious sets.5

Lemma 1. For every network G every acyclic orientation D and every ρ ∈
[0, 1], the set Λρ(D) is ρ-contagious.

Proof. Consider the set of agents that are not activated by Λρ(D),

A := V \ ⟨Λρ(D), G⟩ρ.

If A ̸= ∅, there exists a source to the sub-digraph induced by A, i.e. a vertex
v ∈ A with no incoming edges from A. Hence, all the incoming edges to v
are from ⟨Λρ(D), G⟩ρ, and since v /∈ Λρ(D), it has a ρ-majority of edges from
⟨Λρ(D), G⟩ρ. It implies that in the next step of the ρ-majority dynamics, v is
activated, which is a contradiction.

We conclude that A = ∅ and Λρ(D) is contagious.

Lemma 2. For every network G = (V,E), every ρ ∈ [0, 1] and every ρ-
contagious set A ⊂ V , there is an acyclic orientation D such that

Λρ(D) ⊂ A.

Proof. Let A = A0 ⊂ A1 ⊂ · · · be the sets of activated agents at times 0, 1, . . .
respectively. Let v1, v2, . . . be an ordering of the agents that agrees with the
order of the sets {At}, that is, if vi ∈ At and vj ̸∈ At then i < j. Define

D = (V, E⃗) by

E⃗ := {−−→vivj : vivj ∈ E, i < j}.

Let v ̸∈ A. We must show that v ̸∈ Λρ(D). Since A is contagious, there exists
t > 0 such that v ∈ At \ At−1. All the edges between At−1 to v are oriented in
that direction and they form a ρ-majority of v’s neighbors, therefore, v ̸∈ Λρ(D).

4The definition here refers to finite networks only. Morris (2000) considered infinite net-
works, in which case one should amend the definition by additionally requiring that the
transitive closure of E⃗ is a well-founded partial order. Namely, there are no infinite sequences
v1, v2, . . . such that −−−−→vk+1vk ∈ E⃗, for all k ≥ 1.

5In the literature, there are models of contagion on directed networks. Here, the directions
are only used as a tool for the proofs, and the activation process is still with respect to the
undirected network.
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Lemmas 1 and 2 immediately imply the following proposition.

Proposition 1. For every ρ ∈ [0, 1], and every network G,

hρ(G) = min
D∈AO(G)

|Λρ(D)|.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Let G = (V,E) be an (m0,m)-attachment network of size
n and v1, . . . , vn an ordering of the agents such that for every l > m0 there are
exactly m edges between vl and {v1, . . . , vl−1}.

Define
E⃗ := {−−→vivj : vivj ∈ E, i < j},
⃗E := {−−→vivj : vivj ∈ E, i > j}.

Note that if vi ∈ Λρ(V, E⃗), then either i ≤ m0, or dvi ≥ m/ρ. Therefore,

|Λρ(V, E⃗)| ≤ m0 + (1− F (⌈m
ρ − 1⌉))n.

Similarly, if vi ∈ Λρ(V, ⃗E), then either i ≤ m0, or dvi ≤ m
1−ρ . Therefore,

|Λρ(V, ⃗E)| ≤ m0 + F ( m
1−ρ )n.

By Lemma 1, both Λρ(V, E⃗) and Λρ(V, ⃗E) are contagious, which concludes the
proof.

6 Extensions

6.1 The Tightness of Theorem 1

In this section, we discuss the tightness of Theorem 1. We do so by referring
to regular networks of varying degrees. A d-regular network is one in which the
degree of all the agents is d.

Let’s first spell out the lower bound obtained for such networks. As in the
proof of Theorem 1, it is sufficient to consider ρ = 0.5. By (2), we obtain two
different expressions for odd and even d.

h0.5(G) ≥

{
n

d+1 d is odd,
2n
d+2 d is even.

In order for the seed to be able to activate any agent, its size must be greater
than ρd. We thus have,

h0.5(G) ≥

{
d+1
2 d is odd,

d+2
2 d is even.

Combining the two bounds we get the following proposition.
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Figure 2: A Cayley graph with n = 13, d = 4 and a minimal contagious set (in
white).

Proposition 2. For any d-regular network G, and any ρ ≥ 0.5, we have

hρ(G) ≥

{
max{ n

d+1 ,
d+1
2 } d is odd,

max{ 2n
d+2 ,

d+2
2 } d is even.

Note that Proposition 2 implies that h0.5(G) = Ω(
√
n), for any regular

graph. The following examples prove the tightness of Proposition 2 up to a
multiplicative factor of two. Specifically, for any d ≥ 2, we construct a growing
family of networks together with 0.5-contagious sets whose size is obtained by
replacing the “maximum” in the expression of Proposition 2 with a “sum.”

For d even (i.e., Eulerian graphs) consider the Cayley graph of Zn := Z/nZ
with generators {±1, . . . ,±d

2}.
Consider the following set of size 2n

d+2 + d
2 (see Figure 2):

A0 = {0, d
2 + 1, 2(d2 + 1), . . .} ∪ {−1,−2, . . . ,−d

2}.

This set is contagious since, by induction, t ∈ At for all t = 0, 1, . . ..
For d odd, we construct an example for n divisible by d + 1. We note that

our construction can be modified slightly to fit any size n. Consider the Cayley
graph of Z2 × Zn/2 with generators{

(1, x) : −d−1
2 ≤ x ≤ d−1

2

}
.

The following set of size n
d+1 + d−1

2

A0 = {0} ×
({

−1, . . . ,−d−1
2

}
∪ d+1

2 Zn/2

)
will be shown to be contagious right below. The construction is depicted in
Figure 3.

Since A0 ⊃ {0} ×
({

0, . . . ,−d−1
2

}
∪
{

d+1
2

})
,

A1 ⊃ {1} ×
{
1, . . . ,−d−1

2

}
,
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Figure 3: A bipartite graph with n = 24, d = 3, corresponding to Z2×Z12, and
a minimal contagious set (in white).

and therefore,
A2 ⊃ {0} ×

({
1, . . . ,−d−1

2

}
∪
{

d+1
2

})
.

It follows, by induction on t, that

A2t−1 ⊃ {1} ×
{
t, . . . ,−d−1

2

}
and

A2t ⊃ {0} ×
({

t, . . . ,−d−1
2

}
∪
{⌊

2t
d+1 + 1

⌋
d+1
2

})
,

for every t ≥ 1.

6.2 The Tightness of Theorem 1 for Scale-Free Networks

We used a computer simulation to test the quality of our theoretical bound on
the size of the minimal contagious seed for scale-free networks. In our simulation,
we construct scale-free networks using the preferential attachment algorithm
(Albert and Barabási, 2002), calculate the corresponding realized value of γ,
and find (an approximation to) the minimal contagious seed. We then compare
the size of this set to the predicted one according to Theorem 2, as can be seen
in Figure 4.

Note that computing the minimal-size seed is NP-hard (Kempe et al., 2003),
so we use the following algorithm to find an approximation:

Step 1: Start with a seed of 5 agents with the highest degree.

Step 2: Run the bootstrap percolation dynamics on the network until it reaches a
steady state.
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Figure 4: The theoretical lower bound based on Theorem 2 (black line) and
simulated results for 100 networks of size n = 1000 (red squares).

Step 3: Add the inactive agent with the highest degree.

Step 4: Repeat steps 2− 3 iteratively, until in the entire population is activated.

Step 5: The seed set includes the initial 5 agents and all those who were added in
the third step.

Naturally, this simple algorithm only provides an upper bound on hρ(G), as
the highest degree inactive agent might not be the best choice for the seed set
(it might have too many wasteful connections, see Manshadi et al. (2020) for a
similar discussion). We performed several tests with possible improvements, but
they did not change the results significantly. We conclude that this algorithm
gives a relatively tight upper bound on hρ(G) for the simulation parameters,
and we use it as an estimate of the real value of hρ(G). To make the distinction,

we use ĥρ(G) to refer to the results of the algorithm, ĥρ(G) > hρ(G).
We simulated 100 networks of size n = 1000 with ρ = 0.5, as can be seen in

Figure 4. We observe that the theoretical lower bound is significantly lower than
the approximated minimal size of the seed, a gap that cannot be explained by
the fact that our algorithm does not find the seed of minimal size. We conclude
that Theorem 2 is enough to establish the linear nature of the bound, but it
overestimates the size of the discord set. The assumption that all the edges of
the seed are in the discord set is too optimistic; in reality, the agents with the
highest degree in scale-free networks are typically connected. Thus, the seed
should be larger than what the theorem implies. More information regarding
the structure of the network must be taken into account to obtain a tighter lower
bound on hρ(G), if needed. We leave such investigations to future research.

In addition, for small values of γ, the tail of the distribution is “fat” enough
so that the limit n → ∞ is not reached for n = 1000. In this case, computing
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the cut-off d∗ under the assumption that dv < n adds an additional correction
to the bound. This procedure is already implemented in Figure 4.

6.3 Discontinuity at ρ = 0.5

Theorems 1 and 2 provide linear lower bounds on h0.5(G) (and hence on hρ(G),
for ρ ≥ 0.5 as well). In this section, we explain why such bounds do not exist
for ρ < 0.5.

Let us denote
h0.5−(G) := lim

ρ↗0.5
hρ(G).

There are some networks for which there is little or no difference between h0.5(G)
and h0.5−(G) and other networks where the difference is dramatic. On one
extreme, there is the complete graph Kn, for which h0.5(Kn) = ⌈n/2⌉ and
h0.5−(Kn) = ⌊n/2⌋. Another example is any graph in which all the degrees
are odd and then h0.5(G) = h0.5−(G). On the other extreme, there is the
line-shaped graph Ln, for which h0.5(Ln) = ⌊n/2⌋, whereas, h0.5−(Ln) = 1.

To illustrate a whole range of possible gaps between h0.5 and h0.5− we con-
sider the m-dimensional tori with n = km vertices denoted Cm

k . Namely, the
m-fold product of a k-cycle graph, Cm

k = (V,E) where V = {1, . . . , k}m, and

E =

{
{x, y} ∈

(
V

2

)
: ∃i ∈ [m] xi − yi = ±1 mod k, xj = yj ∀j ̸= i

}
.

The following proposition says that h0.5−(C
m
k ) = θm

(
n1−1/m

)
, whereas,

h0.5(C
m
k ) ≥ n

m+1 , by Proposition 2.

Proposition 3. For every k,m ∈ N,

⌊k/2⌋m−1 ≤ h0.5−(C
m
k ) ≤ n− (k − 1)m ≤ mn1−1/m

Proof. To prove the upper bound consider the set W = V \ {2, . . . , k}m. This
set clearly has the required size. It remains to show that it is contagious w.r.t.
to any ρ < 0.5.

Following Morris (2000) a set of vertices B ⊆ V is called ρ-cohesive if for
every v ∈ B, a proportion of at least ρ of its neighbors is inside B, namely,
|Nv ∩ B| ≥ ρ|Nv|, and a set is ρ-contagious if and only if it intersects all the
nonempty (1− ρ)-cohesive sets.

Let ρ < 0.5 and suppose for the sake of contradiction, that there exists a
nonempty (1 − ρ)-cohesive set B that does not intersect W , namely, ∅ ̸= B ⊂
{2, . . . , k}m. Let x = (x1, . . . , xm) ∈ argminy∈B

∑m
i=1 yi. Since deg(x) = 2m,

and B is (1−ρ)-cohesive, there must be i such that x− ei ∈ B (as well as x+ ei
mod k), where e1, . . . , em is the standard basis of Rm. Alas, x− ei contradicts
the minimality of x.

To prove the lower bound it is sufficient to find ⌊k/2⌋m−1
disjoint (1 − ρ)-

cohesive sets. Indeed, for any i1, . . . , im−1 ∈ {1, . . . , ⌊k/2⌋}, the set

{2i1 − 1, 2i1} × · · · × {2im−1 − 1, 2im−1} × {1, · · · , k}

is (1− ρ)-cohesive, and these sets are disjoint.

15



7 Discussion

We study innovation diffusion via the bootstrap percolation model in scale-free
networks and show that under the optimal seeding strategy, the seed size is
linear in the size of the network. We generalize this statement to a vast variety
of networks of increasing size, provided that their degree distribution converges,
the average degree converges (W1-converging networks, Definition 1) and the
average is finite (Theorem 2). Our research provides insights into the dynamics
of innovation diffusion in scale-free networks and offers practical implications
for industries and policymakers aiming to promote technology adoption and
diffusion. By understanding the minimal seed size required for successful inno-
vation adoption, targeted seeding strategies can be developed to leverage early
adopters and accelerate the diffusion process.

Our work is different from previous studies regarding percolation on net-
works. The main difference is that we study it asymptotically, as the network
size increases while the degree distribution converges to some limit distribution,
whereas the literature mainly considers networks of fixed size. Moreover, we do
not assume that the degree distribution is bounded. Hence, as n increases, the
maximal degree in the network can also increase to infinity. This is in contrast
with previous studies of the size of contagious sets that considered sequences of
networks with growing sizes (or simply infinite networks) but under the assump-
tion that the degree is uniformly bounded (Candogan, 2022; Manshadi et al.,
2020; Morris, 2000). In addition, we study the scale-free networks with a rela-
tive activation threshold, which departs from the common models both in the
network structure and the activation threshold.

In this paper, we show that the seed size is linear in the size of the population.
Both the simulated threshold (10%) and the theoretical one (1%) are high and
require a significant effort in terms of seeding to reach full adoption. We conclude
that from a marketing perspective, it is not feasible to require a full adoption
of the new technology and a modest objective is needed.

Our work regarding scale-free networks focuses on one aspect of this type of
network – the converging degree distribution. We do not take into account other
properties of the networks, such as the inner connectivity of high-degree vertices.
Taking this and other properties into account can close the gap between the
theoretical and simulated results, both by improving the theoretical bound and
by improving algorithms for finding the optimal seed (or its approximation, see
also Akbarpour et al. (2020)). The latter, along with understanding the path
the percolation process makes inside the network, is essential to understand
what are the optimal seeding strategy and the expected percolation time. This
is left for further research.

Finally, we note that if the goal is to activate only a portion of the network,
our results scale accordingly: to activate half of the network we need (order
of) 0.5hρ(G) seeds. This has no impact on our main result (Theorem 2) which
concerns with the asymptotic nature of the bound as the size of the network
increases. We conclude that if we want to activate a linear fraction of the
network, the seed set must be itself a linear fraction of the network, in contrast
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to other models, such as Amini et al. (2013).
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