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Abstract

A decision maker sequentially approaches two experts who individually possess an informative

private signal regarding an unknown state of the world. Each expert strives to provide an accurate

recommendation regarding the true state, while preferring to be the only one to do so. Our analysis

provides a mapping from the experts’ expertise levels to the equilibria of this game, showing that: (i)

better-informed experts may generate worse recommendations in equilibrium; and (ii) ordering the

experts so that the lower-level one provides the second opinion can typically improve the outcome.

Moreover, we show that by limiting the experts’ liability for being incorrect, the DM can facilitate

cooperation and increase the probability of learning the true state of the world.
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1 Introduction

“Two are better than one, because they have a good return for their labor. For if one falls down, his

companion can lift him up.” Ecclesiastes 4:9-10

These wise words from Ecclesiastes capture the natural idea that two individuals can provide backup

to one another: in case one fails, the other can still deliver. This is also the reason why in situations of

growing complexity and uncertainty, people feel the need to consult multiple experts, instead of just

one, before making important decisions. Such decisions could vary from assessing an academic paper

for publication, to career choices, and even to complex medical procedures. In this paper we aim to

answer in what sense, and under which conditions, two are indeed better than one.

We consider a decision maker (DM) who faces a decision under uncertainty and sequentially con-

sults two experts. The first expert provides a preliminary assessment, whereas the second is considered

to be the second opinion. Every expert naturally strives to provide the correct assessment, and maybe

even wishes to be the only one to do so, in order to establish superiority. Since all assessments are

public, the second expert observes the recommendation of the first. Our goal is to shed light on the

strategic interaction between the two privately informed experts, and its implications on the ability of

the DM to reach a correct decision.

The described process is, in fact, a sequential two-player Bayesian-game, among the two experts.

Given that each expert has an individual level of expertise, we ask what are the equilibria of this game

and how they evolve as a function of the payoffs and expertise levels. Our analysis shows that there

are 4 main equilibria profiles: (i) a Revealing equilibrium in which both experts reveal their private

information; (ii) a Herding equilibrium in which the second expert mimics the first; (iii) a Guided

equilibrium in which some learning among the experts takes place; and (iv) a Mixed equilibrium which

builds on the Guided equilibrium (with mixed strategies).

To study the nature of these equilibria, we extend our analysis in two ways. First, we map

the parameter-space (of expertise levels and payoffs) to the different equilibria, which results in four

disjoint sets, one for each equilibrium. Second, we use the notion of correctness, defined through the

probability to reach the correct decision, to classify each of the mentioned equilibria. Due to the

learning involved, the guided equilibrium evidently supports the highest correctness level.

We then combine these two research paths to present two intriguing effects. The first effect shows

that the correctness of the process is not a monotonic function of the experts’ expertise levels. Specif-
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ically, we show that an infinitesimal increase in the second expert’s expertise level may yield a stark

drop in the correctness of the process. We refer to the level at which this phenomenon occurs as The

Humility Threshold.

To better understand this effect, one needs to consider the transition between the previously

mentioned equilibria. Consider, for example, a hypothetical situation in which a DM potentially faces

a complex medical procedure. Before making a decision, the DM sequentially consults two physicians

who individually possess a private informative signal regarding his condition. The probability that

the private signal of physician i matches the correct medical condition is referred to as the expertise

level qi of physician i. We typically assume that: (i) all recommendations are public; (ii) every

physician prefers to be correct, while hoping the other physician is incorrect; and (iii) in case the

two physicians provide contradicting assessments, the DM follows the second opinion (otherwise, the

process of consulting two experts becomes redundant).

The equilibria of such games are naturally determined according to the specific payoffs and exoge-

nous probabilities. Yet, ceteris paribus, we can still ask how does the expertise level of the second

expert affect the DM’s final decision. Figure 1a illustrates that the relation between these two elements

is not necessarily monotone. The figure depicts the probability that the DM’s decision is correct, gen-

erally referred to as correctness, as a function of the second physician’s expertise level, q2. The blunt

drop occurs when q2 crosses the Humility Threshold because the game transitions from a Guided equi-

librium to a Revealing one. As long as the expertise level of the second physician is relatively small,

he remains attentive to the assessment of the first physician in a way that allows for some learning.

Once the second physician crosses this threshold, the game shifts to a Revealing equilibrium in which

the second physician completely ignores the assessment of the first, thus decreasing the probability to

reach a correct decision.

The second effect, referred to as The Intern Effect, considers the ordering of physicians according

to their expertise levels. It shows that in some cases it is better to request a second opinion from the

less-informed physician. This phenomenon is also a result of shifting between two equilibria, where a

less-informed second physician learns from the assessment of the first in equilibrium, whereas reversing

the order eliminates this possibility. We however stress that identifying the less-informed expert is not

easy, especially when positioned second, because the latter’s ex-post success rate would typically (not

always!) appear better.
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The impact of the second physician on the DM’s correctness
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Figure 1: In Figure 1a, an infinitesimal increase in the second physician’s expertise level shifts the game from a Guided

equilibrium, described by the dotted (blue) line, to a Revealing equilibrium, depicted by the solid (red) line. This leads

the second physician to ignore the first, an action that eventually results in a worse expected outcome. Figure 1b presents

two possible equilibria to the left of the Humility threshold. The dotted (blue) line presents the equilibrium, a guided

one, given that the less-informed expert provides the second opinion, and the dashed horizontal (green) line presents the

equilibrium, a Revealing one, in case the more-informed expert provides the second opinion. One can see that below and

close to the threshold (grey area), it is better to consult the less-informed expert second.

1.1 Related research

The current research encompasses elements from several different sub-fields, thus its exact position in

the literature is somewhat ambiguous. The primary natural candidate is the field of social learning

with externalities, which expanded remarkably since the studies of Banerjee (1992), Bikhchandani

et al. (1992), and Smith and Sorensen (2000).1 Social learning with externalities typically relates to

either positive or negative congestion costs, under which players’ payoffs either increase or decrease

depending on the number of players who choose the same action (see, e.g., Veeraraghavan and Debo

(2011), Debo et al. (2011), and Eyster et al. (2014), among others). On the one hand, our study

matches this line of research through the possibility of learning under negative externalities among

experts, as well as the basic information structure and actions. For example, Eyster et al. (2014) show

that backward-looking negative externalities (i.e., players’ actions are less profitable the more they are

played by others) prevent action fixation and improve social learning. This resembles our notion of a

1For a recent extensive review of this topic, see Bikhchandani et al. (2021).
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Guided equilibrium, where the second player learns from the first, through payoff (and information)

considerations. On the other hand, we study the equilibria of a Bayesian-game, which includes both

positive and negative externalities as the same time. So in our set-up, the highest/lowest payoff is

achieved when a player chooses the ex-post correct/incorrect action alone.

Another critical difference relays on the fact that our model is a two-stage two-player Bayesian-

game, thus eliminating the possibility of asymptotic learning as in Arieli (2017) and Mossel et al.

(2020). A study more related to ours is Dasgupta (2000), which also focuses on finite and sequential

Bayesian-games. It identifies transitions between equilibria outcomes through a trigger strategy, that

depends on the private belief of the stage player. Though the payoffs and information structure (as

well as the monotone likelihood ratio property) are rather different from our work, the shifts between

equilibria through a threshold strategy resemblances our equilibria mapping and transitions.

Our study also relates to the research agenda of Bayesian games and Bayesian comparative statics.2

The more relevant and recent studies in this field are Jensen (2018) and Mekonnen and Vizcáıno (2022),

who study how the distribution of individual decisions and equilibria outcomes vary with changes in

the underline economic parameters. They follow the studies of Athey (2001) and Van Zandt and

Vives (2007) who prove that Bayesian-Nash equilibrium profiles are point-wise monotone functions of

the players’ beliefs. Mekonnen and Vizcáıno (2022) study how a higher accuracy level of one player

influences the equilibrium actions of all others. This again resembles our analysis, and specifically, the

two previously discussed effects (the Humility threshold and The Intern Effect). The main differences

between these studies and the current work are: (i) their focus on one-stage Bayesian games (rather

then sequential); (ii) their use of a continuum of actions and different payoff functions (quasi-concave

differences/supermodular); and (iii) the relevant information structures.

Structure of the paper. In Section 2 we describe the model and the key definitions. In Section

3 we present the main results, divided into two subsections: in Subsection 3.1 we deal with the case of

symmetric payoffs, and in Subsection 3.2 we extend the discussion to asymmetric payoffs, where the

intern effect and the humility threshold exist. Concluding remarks are given in Section 4. To facilitate

readability, proofs are relegated to the appendix.

2This line of research originates from the field of statistical decision-making, who study how variations in the infor-

mation structure influence a single decision maker, going back to the studies of Blackwell (1951, 1953), Lehmann (1988),

Quah and Strulovici (2009), and more recently Lagziel and Lehrer (2019, 2020).
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2 The model

A decision maker (DM) wishes to identify a binary unknown state. For that purpose, the DM ap-

proaches two heterogeneous experts (i.e., players), who possess private informative signals concerning

the state. For example, the DM could be a firm that approaches two advisers concerning a decision

to enter a new market; an individual who consults two salespersons regarding an expensive purchase;

or even a research student discussing a potential research question with faculty members. The DM

approaches them sequentially, so that the second expert observes the recommendation of the first, and

can be thought of as “a second opinion”. Each expert strives to establish superiority over the other, in

the sense that they individually prefer to provide an accurate assessment of the realized state, whilst

hoping the other (expert) falls short of this goal. This generates a sequential Bayesian game where

the experts’ payoffs depend on the realized profile of recommendations and on the realized state.

Formally, consider the following two-player, incomplete-information sequential game G. There are

two states denoted by θ ∈ Θ = {0, 1}, and a prior probability p = Pr(θ = 0) > 1
2 . Given θ, every player

i = 1, 2 (henceforth, Expert i) receives an independent, noisy and informative signal si ∈ S = {0, 1},

such that Pr(si = θ|θ) = qi. One can think of qi as the expertise level of Expert i, namely a measure of

Expert i’s ability to provide the correct recommendation. The action set of every Expert i is denoted

by A = {0, 1}, where every action ai ∈ A denotes a recommendation regarding the realized state.

The game evolves as follows. First, nature chooses a state θ according to a common, publicly

known, prior p. Then, every Expert i receives a private signal si based on the previously defined

information structure. Expert 1 is the first to act by posting a public recommendation a1 ∈ A. After

observing a1, Expert 2 provides his public recommendation a2 ∈ A.

Nature selects θ Expert 1 Expert 2 DM
s1

s2

a1 a2

Figure 2: The evolution of the game.

We assume that every expert prefers giving the accurate recommendation – one that matches the

state. To establish superiority, every expert also prefers that the recommendation of the other expert

proves to be false. The latter condition ensures that the expert is either the only correct one, or that

both provided false assessments, so that they jointly share the blame. To model these preferences, the
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utility of every Expert i is characterized by four possible payoffs: U1 > U2 > U3 > U4, where U1 is the

payoff in case Expert i is the only one to provide a correct recommendation, U2 is the payoff when

both experts are correct, U3 is the payoff in case both experts are incorrect, and U4 is the payoff of

Expert i when he is the only one to provide the wrong recommendation. Since games are strategically

equivalent under an affine transformation of payoffs, it is without loss of generality that we normalize

U2 = 1 and U3 = −1. At this point our analysis is divided into two parts: in Section 3.1 we assume

symmetry between the two extreme cases, so U1 = −U4 ≡ α > 1, whereas in Section 3.2 we study the

general case where U1 ̸= −U4. The realized symmetric payoffs are summarized in Table 1.

Expert 1

Expert 2

a2 = θ a2 = 1− θ

a1 = θ (1, 1) (α,−α)

a1 = 1− θ (−α, α) (−1,−1)

Table 1: The payoffs matrix given a realized state of θ ∈ Θ.

Denote the strategy of Expert 1 by σ1 : S → ∆(A), and the strategy of Expert 2 by σ2 : S ×A →

∆(A). Since the game is sequential, the second expert has a structural advantage of observing the

recommendation of the first.

To ensure that the experts’ recommendations are indeed informative, independently of the state, we

assume that min{q1, q2} ≥ p, which is equivalent to Pr(θ = x|si = x) > 1
2 for every (i, x). Otherwise,

in a single expert scenario where qi < p, the state θ = 0 is more likely than θ = 1, regardless of the

expert’s information and assessment.

We analyze this game according to the standard Bayesian-Nash equilibrium. Our first goal is to

identify an equilibrium for every composition of the parameters (p, q1, q2, U1, U4). To achieve this goal,

we define the following four equilibrium structures, and our analysis would show that for every choice

of the mentioned parameters, exactly one of these equilibria exists:3

• A profile (σ1, σ2) is a Revealing equilibrium if the actions of both experts match their private

signal, i.e., if σi = si for every i, si;

• A profile (σ1, σ2) is a Herding equilibrium if the recommendation of Expert 2 matches that of

3Other than on the boundaries between different areas in this parameter space, where different equilibria coincide.
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Expert 1 in every realization of the game, while Expert 1 provides his private signal σ1 = s1;

• A profile (σ1, σ2) is a Guided equilibrium if both experts provide their private signal, σi = si, with

the exception of σ2(a1 = 0, s2 = 1) = 0. That is, the second expert provides a recommendation

of a2 = 0 whenever Expert 1 recommends a1 = 0;

• A profile (σ1, σ2) is a Mixed equilibrium if both experts use a mixed strategy over their recom-

mendations. In particular, Expert 1 reports his signal if it is s1 = 0, and uses a mixed actions

otherwise, σ1(s1 = 1) ∈ ∆(A). Expert 2 reports his signal, σ2 = s2, with the exception of

σ2(a1 = 0, s2 = 1) ∈ ∆(A).

Using the previous classification and analysis of the different equilibria, we proceed to our main

goal – to study the impact of the strategic interaction between the experts on the DM’s final decision.

For that purpose we use the notion of “correctness”, which measures the probability of being correct, in

each of the mentioned equilibria.4 Formally, given a profile (σ1, σ2), define the correctness of Expert i

by Ci = Pr(σi = θ|σ−i). In addition, we are interested in the correctness of the process, which is the

probability that the DM learns the true state of the world. We assume that the DM adopts the second

opinion, namely the recommendation of the second expert, so C(q1, q2) = C2. Before we continue, let

us clarify this assumption.

The assumption that the DM follows the second opinion is based on the idea that, in many cases,

a DM who approaches experts is a layman in terms of the decision process. Specifically, the DM

is unfamiliar with the underline statistics of the problem, which include the experts’ expertise levels

and the joint distributions of the event and signals. Thus, the relevant options for the DM are

either to follow the first expert, or to follow the second (note that a simple randomization among

the two experts would not produce a superior outcome). However, the first expert cannot learn from

Expert 2’s recommendation which he does not see. So following the recommendation of the first expert

would only yield a correctness of at most q1, making the second expert redundant. In other words,

our focus on the learning process, vis-à-vis the recommendation of Expert 2 in equilibrium, becomes

rather straightforward. Moreover, we emphasize that the DM’s decision (to follow the second expert)

does not change the analysis of the aforementioned game. The payoffs of the experts depend on their

recommendations and on the true state of the world, and neither on the actions nor on the information

4See Arieli et al. (2018) for more details.
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of the DM. Hence, our analysis remains valid even if the DM can only observe the recommendation

of just one expert.

Finally, we introduce a logit notation to represent probabilities, so

p̃ := ln

(
p

1− p

)
, q̃i := ln

(
qi

1− qi

)
.

This notation allows us to simplify some of the equations and conditions resulting from Bayesian

updating and present them as linear functions.

3 Main results

Our main results are divided into two parts: in Section 3.1 we study the case of symmetric payoffs, and

in Section 3.2 we focus on asymmetric ones. The preliminary focus on the symmetric case facilitates

the exposition of the key features of the model and resulting equilibria. Using these features, we

present the more advanced and insightful aspects of the second-opinion problem in Section 3.2.

Specifically, in Proposition 2 we prove that the correctness is not a monotone function of Expert 2’s

expertise level, so that an infinitesimal increase of q2 may trigger a stark drop in the correctness of

the process. More precisely, we show that there is a threshold expertise level, namely the humility

threshold, so that Expert 2 ignores the action (and the conveyed information) of Expert 1 if and

only if the second expert’s expertise level is above the threshold. Thus, only a less-informed expert

would take both signals into account to provide an even more accurate recommendation than the first,

more-informed, expert.

In addition, in Proposition 3 we establish the importance of aligning the experts in an optimal

manner, so that the second opinion is taken from the less-informed expert (the one with a lower

expertise level), rather than the better-informed one. We refer to this result as the intern effect because

it allows a more beneficial learning process, in equilibrium, compared to the alternative ordering of

experts.

3.1 The case of symmetric payoffs

Our preliminary analysis deals with the symmetric case where the experts’ individual payoffs offset

when they provide different assessments, namely, U1 = −U4 ≡ α > 1. The analysis is divided into

two parts: in Theorem 1 we depict sufficient and necessary conditions for the previously mentioned
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equilibria to arise, and in Proposition 1 we study the correctness of the process under each of these

equilibria.

Starting with Theorem 1, we divide the entire parameter-space (p, q1, q2, α) into four disjoint parts,

where each supports a different equilibrium type. Generally speaking, it shows that a Herding equilib-

rium arises if and only if Expert 1 is significantly more accurate than Expert 2, whereas a significantly

superior Expert 2 yields a Revealing equilibrium. On the other hand, the more sophisticated equilibria

(the Guided and Mixed ones) emerge when neither of the two experts is significantly more accurate

than the other.

Theorem 1. Consider the previously defined game G.

1. There exists a Herding equilibrium if and only if q̃1 ≥ q̃2 + p̃.

2. There exists a Revealing equilibrium if and only if q̃2 ≥ q̃1 + p̃.

3. There exists a Guided equilibrium if and only if q̃i ≤ q̃−i + p̃ for every i = 1, 2, and

q̃1 ≥ p̃+ ln

(
2 exp(−q̃2) + α+ 1

(α+ 1) exp(−q̃2) + 2

)
. (1)

4. There exists a Mixed equilibrium if and only if q̃i ≤ q̃−i + p̃ for every i = 1, 2, and Ineq. (1)

does not hold.

Though all proofs are deferred to the appendix, let us point out that, in order to avoid repeti-

tions, the proof of Theorem 1 builds on the general set-up of the game. Hence, it partially supports

subsequent results in Section 3.2.

Figure 3 provides a visualization to the results of Theorem 1. It shows the disjoint equilibrium

regions in the (q1, q2)-plane, for fixed α and p. One can see that the two regions of the Herding and

Revealing equilibria are rather straightforward – a significantly higher expertise level of one expert

over the other. On the other hand, the regions of the Guided and Mixed equilibria are more intriguing.

First, the Guided and Mixed equilibria arise when neither of the experts have clear dominance over the

other in terms of expertise level. This leads Expert 2 to rely on Expert 1’s truthful action in borderline

situations, namely when Expert 2’s signal is s2 = 1 and this contradicts Expert 1’s action of a1 = 0

and the prior (which is biased towards θ = 0). Second, the distinction between a Guided equilibrium

and a Mixed one, as given in Equation (1) and presented in Figure 3, is based on Expert 1’s relative
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expertise level. When Expert 1’s expertise level q1 is rather close to the prior p, the high uncertainty

leads both experts to hedge between their two available actions, i.e., a Mixed equilibrium.

Equilibria regions in the (q1, q2)-plane

1

1

M
ix
e
d

Herding

Revealing

Guided

q1

q2

Figure 3: The different equilibria regions in the (q1, q2)-plane. Given p = 0.6 and α = 2, each region corresponds to

exactly one of the four possible equilibria: Revealing (red), Guided (blue), Herding (green), Mixed (white).

Though Theorem 1 provides a complete mapping from any set of parameters to an equilibrium, one

may wonder whether other equilibria exist. The answer to this question is yes, but these equilibria are

quite null. For example, the profile in which both experts always recommend ai = 0, irrespective of

their signals, is an equilibrium, if and only if q1 = q2 = p. We generally disregard such examples because

they do not provide meaningful insights into the strategic interaction between the two experts. On the

other hand, it is easy to verify that non-informative strategies, i.e., providing the same recommendation

independently of the signals, do not consist an equilibrium, unless q1 = q2 = p. This originates from

the combination of informative signals and symmetric payoffs, so that being correct strictly dominates

being incorrect, assuming that the other expert is uninformative.

Building on the results of Theorem 1, we can now provide some insights into the correctness of this

decision process, from the DM’s perspective, under the different equilibria. The following proposition

shows that a Guided equilibrium, specifically, provides a greater accuracy compared to what each

expert can achieve by himself, whereas the other three are limited to the experts’ individual levels.

This improvement originates from the fact that a Guided equilibrium supports a form of strategic

learning, in equilibrium, which strictly increases their aggregate accuracy level.
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Proposition 1. Given either a Herding or a Revealing equilibrium, the correctness of the process is

C(q1, q2) = max{q1, q2}, and given a Mixed equilibrium the correctness is C(q1, q2) = q2. However, in

case there exists only a Guided equilibrium, the correctness of the process is C(q1, q2) > max{q1, q2}.

The two straightforward cases in the analysis of Proposition 1 are the Herding and Revealing

equilibria, that yield, by definition, a correctness of q1 and q2, respectively. To compare, a Guided

equilibrium generates a strictly higher correctness compared to max{q1, q2} because it supports a

learning process among the two experts. Figure 4 illustrates this result as a function of Expert 2’s

expertise level, for a fixed q1. It is important to note that these results, and the notion of correctness

in general, are a function of the experts’ strategies profile, i.e., the equilibrium type. So, from a

mechanism-design perspective, the DM can only benefit from supporting a Guided equilibrium, when

feasible, relative to the other equilibria types.

Interestingly, though the Mixed equilibrium supports a form of learning, similarly to the Guided

equilibrium, its correctness remains limited to q2. This originates from the indifference that both

experts generate, in equilibrium, by hedging between their two possible actions. So although some

learning can take place, it is concealed by the inherent disinformation that the first expert generates

through his randomization.

Correctness as a function of q2

1

0.7

0.8

0.9

1

Herding RevealingGuided

q2

C

Figure 4: The correctness of the process as a function of the second expert’s level, and a fixed level of q1 = 0.8 for the

first expert, and (p, α) = (0.6, 2). A Mixed equilibrium does not exist under these parameters (see Fig. 3). The dashed

vertical lines divide the axis to the different equilibria regions (from left to right): Herding, Guided, and Revealing.

Notably, the Guided regime supports a correctness level that individually supersedes the expertise levels of both experts.
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3.2 The case of asymmetric payoffs

Using the basic features of the second-opinion problem and its possible solutions, as given in Section 3.1,

we turn to study the general set-up in which the experts’ payoffs do not necessarily offset when they

provide different assessments, i.e., when U1 ̸= −U4. Still, without loss of generality, the normalization

of U2 = 1 and U3 = −1 remains as before, and the new payoffs are summarized in Table 2. Hence,

Expert 1

Expert 2

a2 = θ a2 = 1− θ

a1 = θ (1, 1) (U1, U4)

a1 = 1− θ (U4, U1) (−1,−1)

Table 2: The payoff matrix given a realized state of θ ∈ Θ with asymmetric payoffs.

U1 + 1 is the potential gain from non-conformity (being correct alone versus being incorrect with the

other expert), and 1 − U4 is the potential gain from conformity (being correct with the other expert

versus being incorrect alone). We define the non-conformity gain ratio as the ratio between these two

numbers, and denote it by γ = U1+1
1−U4

. To be inline with the logit representation of probabilities, we

also denote γ̃ = ln γ.

In general, we use the non-conformity gain ratio γ to study how the equilibria of the game evolve,

as of a function of the payoffs. Though one can perform an analysis for every γ̃ (and for every U1

and U4), we limit the discussion to the range γ̃ ≤ q̃1 + q̃2 − p̃. The reason is that when γ̃ is too

large, it becomes the sole driving force behind the equilibria and subsequent results, irrespective of the

experts’ private and public information. Specifically, suppose that both signals are s1 = s2 = 1, and

that Expert 1 truthfully reports a1 = 1. This is the highest possible posterior on the event {θ = 1}.

Still, if the following inequality holds

(1− p)q1q2 · 1 + p(1− q1)(1− q2) · (−1) ≤ (1− p)q1q2 · U4 + p(1− q1)(1− q2) · U1,

then Expert 2’s benefits from “gambling” on the low-probability event {θ = 0|s1 = s2 = 1}, simply

because it opposes the action of Expert 1. The last inequality is indeed q̃1 + q̃2 − p̃ ≤ γ̃.

We start with a simple generalization of previous results. The following theorem extends Theorem 1

to asymmetric payoffs, that is, when γ̃ ̸= 1. Note that for the case of a Guided equilibrium, we impose

an additional condition that Expert 1 reveals his private signal in equilibrium. This allows us to
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avoid the differentiation between a Guided and a Mixed equilibrium, which does not provide further

meaningful insights to the analysis in this section.

Theorem 1∗. Consider the previously defined game G with fixed parameters p, q1, q2, and γ.

• There exists a Herding equilibrium if and only if γ̃ < q̃1 − q̃2 − p̃.

• If Expert 1 reveals his private signal in equilibrium and q̃1 − q̃2 − p̃ < γ̃ < q̃1 − q̃2 + p̃, then the

unique equilibrium is a Guided one.

• There exists a Revealing equilibrium if and only if q̃1 − q̃2 + p̃ < γ̃ < q̃1 + q̃2 − p̃.

The ability to vary the payoffs of the game, through the non-conformity gain ratio γ, shows how

the transition from a Herding equilibrium to a Revealing one, passes through a Guided equilibrium.

Figure 5 illustrates this transition through the different intervals, with respect to γ̃, for each of the

mentioned equilibria.

q̃1 − q̃2 − p̃ q̃1 − q̃2 + p̃ γ̃

Herding Guided Revealing

Figure 5: The transitions between equilibria regimes as a function of γ.

The following Proposition 2, which builds on Theorem 1∗, presents one of the main insights of

this paper. It shows that a better informed Expert 2 does not necessarily improve the overall deci-

sion/correctness of the DM. In fact, one can find two disjoint intervals such that every expertise level

of Expert 2 in the lower interval generates a strictly higher correctness than every expertise level in

the higher interval. The limit value that separates these two intervals is referred to as the humility

threshold - the highest level that allows for a strategic learning process in equilibrium.

Proposition 2 (The humility threshold). Fix (q1, γ, p) such that q̃1 > γ̃ > p̃ and assume that

Expert 1 reveals his private signal in equilibrium. Then, there exist q2 > q2 such that C(q1, q2) >

C(q1, q2). Moreover, there exists q∗2 such that for every q2 ∈ (q
2
, q∗2) and every q′2 ∈ (q∗2, q2), the

correctness is higher when the second expert has lower quality signal, i.e. C(q1, q2) > C(q1, q
′
2).

Two clarifications are in order. First, the preliminary assumption that q̃1 > γ̃ > p̃ enables us

to shift from a Guided equilibrium to a Revealing one, by varying the expertise level q2 of Expert 2.
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Otherwise, e.g., in case γ̃ is significantly larger than q̃1+p̃, we are left only with a Revealing equilibrium,

independently of q2. Second, note that the potential loss from crossing the humility threshold q∗2 is

not necessarily a mild one. Figure 6 illustrates the potential magnitude of this non-monotone effect,

where an infinitesimal increase in q2 triggers a drop from 0.81 to 0.75 in the overall correctness value.

Correctness as a function of q2

q10.75

0.7

0.8

0.9

RevealingGuided

q2

C

Figure 6: The correctness of the process as a function of Expert 2’s expertise level, given p = 0.6, q1 = 0.8, and

γ = 2. The dotted (blue) line describes the correctness under a Guided equilibrium, and the solid (red) line describes

the correctness under a Revealing equilibrium. Note that the Humility threshold is below q1.

The next proposition relates to the possibilities of the DM in choosing the order of experts. Though

the DM is, potentially, a layman in terms of the given problem, there is still the possibility of switching

the order of experts in order to reach a better expected outcome. Proposition 3 shows that the DM

may prefer taking the second opinion from the less-informed expert, namely the one with the lower

expertise level. We refer to this result as the intern effect since one can think of the second expert

as an intern who takes into account previous recommendations. The alternative ordering, where the

better-informed expert is second, does not allow for this learning process to take place, since the

better-informed expert does not feel the need to consider previous assessments. Notably, this entire

process occurs in equilibrium, so the disregard for less-informed opinions is not a behavioral artifact,

such as arrogance or recklessness, but the optimal strategic reaction of a better-informed agent.

Proposition 3 (The intern effect). Assume γ̃ > p̃ and fix qH > qL such that q̃H− q̃L < p̃. For every

pair of experts such that (q1, q2) = (qH , qL) yields a Guided equilibrium with correctness C(qH , qL),
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then reversing their order to (q1, q2) = (qL, qH) would generate a Revealing equilibrium with a lower

correctness of C(qL, qH) < C(qH , qL). Hence, the higher correctness is obtained when the second

opinion is given by the expert with the lower quality signal.

A simple and important way to extend Proposition 3 is by examining a considerably better-

informed expert, i.e., a significantly large qH relative to qL. In case qH is indeed sufficiently large,

then approaching this expert first would yield either a Herding equilibrium with a correctness of qH , or

a Guided one, with a correctness that exceeds qH . To compare, switching the order of experts would

yield a Revealing equilibrium with a correctness of qH . So, it becomes weakly better to approach the

highly informed expert first, even if a Guided equilibrium is not always achievable.

From a practical perspective, the classification of experts by their expertise levels is anything but

trivial. This problem originates from the fact that Expert 2 sees the recommendation of Expert 1 in

each of the mentioned equilibria in Proposition 3, and this enables him to maintain a higher correctness

level relative to Expert 1. As an example, one can think of the structural advantage that top executives

maintain by their ability to typically conclude meetings, and how this procedure supports the image

of well-thought-out individuals. Yet, in some cases, the correctness of Expert 2 remains well below

the correctness of Expert 1. This occurs in equilibrium and although the second expert observes the

recommendation of the first, and a mimicking strategy is indeed feasible, but sub-optimal. We derive

this conclusion from the following observation.5

Observation 1. Fix p, q1, q2, and assume that Expert 1 reveals his private signal in equilibrium.

Then, the correctness C(q1, q2) in equilibrium is not a monotone function of γ:

• under a Herding equilibrium, i.e., γ̃ < q̃1 − q̃2 − p̃, the correctness is q1;

• under a Guided equilibrium, i.e., q̃1 − q̃2 − p̃ < γ̃ < q̃1 − q̃2 + p̃, the correctness is C(q1, q2) >

min{q1, q2}; and

• under a Revealing equilibrium, i.e., q̃1− q̃2+p̃ < γ̃ < q̃1+ q̃2−p̃, the correctness is C(q1, q2) = q2.

Before we conclude, let us point to one striking difference between Observation 1 and Proposition 1

regarding the case of a Revealing equilibrium. The correctness under a Revealing equilibrium is q2, by

definition. Under symmetric payoffs (i.e., γ̃ = 0), a Revealing equilibrium implies that q2 > q1, whereas

under asymmetric payoffs (i.e., γ̃ ̸= 0), a Revealing equilibrium exists even if q2 < q1, depending on p̃

5The proof follows directly from Theorem 1∗ and Proposition 1, thus omitted.
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and γ̃. Hence, from a mechanism-design perspective, a sub-optimal design of incentives (through γ)

can cause the correctness to drop to the minimal value among the two experts, whereas an optimal

design of γ can facilitate either a Guided, or a Herding equilibrium, to achieve the maximal possible

correctness level, given the two available experts. As evident from Observation 1, the ability to fix γ

is quite robust since the equilibria are supported on a wide range of γ values.

4 In conclusion

This paper provides an analysis of a sequential, two-player, Bayesian game, in which one equilibrium

supports a higher level of strategic learning among experts, than all other equilibria. Our analysis

depicts a mapping from the experts’ expertise levels to the equilibria of this game, showing that: (i)

better-informed experts may generate worse recommendations in equilibrium; and (ii) ordering the

experts so that the lower-level one provides the second opinion can typically improve the outcome.

This contraries the common belief that the more skilled expert should be the one to provide the second

opinion.

Moreover, if the decision maker can influence the experts’ liability in case of an error, then he

can ensure an equilibrium in which his correctness is maximized. This optimal liability is generally

robust and remains the same, irrespective of either small changes in the experts’ quality, or the prior

probability of the state of the world. Thus, although the DM is typically uninformed of either the

experts’ assessment processes, or their quality, he can still facilitate cooperation between the two and

optimize his probability of learning the true state of the world.
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A Proofs

Proof of Theorem 1. To avoid repetitions, we start our analysis with the more general payoffs given

in Table 2. Recall γ̃ = ln(γ) = ln
[
U1+1
1−U4

]
, whereas the payoffs in Table 1 yield γ̃ = 0.

Fix q1, q2, p, and γ. Assume that Expert 1’s action matches his signal, as in all the equilibria stated

in the Theorem, other than the Mixed equilibrium. Our analysis is divided into the four different states

depending on a1 and s2.

Consider first the case where a1 = 0 and s2 = 0. This state occurs with probability q1q2 when

θ = 0, and with probability (1 − q1)(1 − q2) when θ = 1. Expert 2’s best response in this state is

a2 = 0 if and only if

pq1q2 · 1 + (1− p)(1− q1)(1− q2) · (−1) ≥ pq1q2 · U4 + (1− p)(1− q1)(1− q2) · U1,

(the best response is a2 = 1 when the inequality is reversed). The last inequality can be rearranged

into
p

1− p
· q1
1− q1

· q2
1− q2

· 1− U4

1 + U1
≥ 1,

or, equivalently,

p̃+ q̃1 + q̃2 − γ̃ ≥ 0. (2)

Next, consider the case where a1 = 0 and s2 = 1. This state occurs with probability q1(1 − q2)

when θ = 0, and with probability (1 − q1)q2 when θ = 1. Expert 2’s best response in this state is

a2 = 0 if and only if

pq1(1− q2) · 1 + (1− p)(1− q1)q2 · (−1) ≥ pq1(1− q2) · U4 + (1− p)(1− q1)q2 · U1,

which can be rearranged into

p̃+ q̃1 − q̃2 − γ̃ ≥ 0. (3)

Third, consider the case where a1 = 1 and s2 = 0. This state occurs with probability (1 − q1)q2

when θ = 0, and with probability q1(1 − q2) when θ = 1. Expert 2’s best response in this state is

a2 = 0 if and only if

p(1− q1)q2 · U1 + (1− p)q1(1− q2) · U4 ≥ p(1− q1)q2 · (−1) + (1− p)q1(1− q2) · 1,

which can be rearranged into

p̃− q̃1 + q̃2 + γ̃ ≥ 0. (4)
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Lastly, consider the case where a1 = 1 and s2 = 1. This state occurs with probability (1−q1)(1−q2)

when θ = 0, and with probability q1q2 when θ = 1. Expert 2’s best response in this state is a2 = 0 if

and only if

p(1− q1)(1− q2) · U1 + (1− p)q1q2 · U4 ≥ p(1− q1)(1− q2) · (−1) + (1− p)q1q2 · 1,

which can be rearranged into

p̃− q̃1 − q̃2 + γ̃ ≥ 0. (5)

In a Revealing equilibrium, a2(·, s2) = s2, so Ineq. (2) and Ineq. (4) should hold while Ineq. (3)

and Ineq. (5) are reversed:

p̃+ q̃1 + q̃2 − γ̃ ≥ 0, (6a)

p̃+ q̃1 − q̃2 − γ̃ ≤ 0, (6b)

p̃− q̃1 + q̃2 + γ̃ ≥ 0, (6c)

p̃− q̃1 − q̃2 + γ̃ ≤ 0. (6d)

Note that Ineq. (6d) implies that Ineq. (6a) holds, and Ineq. (6b) yields Ineq. (6c). To simplify

the analysis, we now revert to the conditions of Theorem 1 by taking γ̃ = 0. Moreover, recall that

min{q̃1, q̃2} ≥ p̃, so the aforementioned inequalities reduce to Ineq. (6b) with γ̃ = 0, i.e., q̃1 + p̃ ≤ q̃2,

as stated in the theorem.

Hence, if Ineq. (6b) with γ̃ = 0 holds, whenever Expert 1 reports his signal, the best response of

Expert 2 is to report his signal as well. Clearly, the converse is true. Suppose Expert 2 reports his

signal, so the action of Expert 1 have no effect on the action of Expert 2. The expected payoff of being

correct is positive while the expected payoff of being incorrect is negative, so it is better to report the

signal.

In a Herding equilibrium, a2(a1, ·) = a1, so Ineq. (2) and Ineq. (3) should hold while Ineq. (4)

and Ineq. (5) are reversed:

p̃+ q̃1 + q̃2 − γ̃ ≥ 0, (7a)

p̃+ q̃1 − q̃2 − γ̃ ≥ 0, (7b)

p̃− q̃1 + q̃2 + γ̃ ≤ 0, (7c)

p̃− q̃1 − q̃2 + γ̃ ≤ 0. (7d)
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Note that Ineq. (7d) implies that Ineq. (7a) holds, and Ineq. (7c) yields Ineq. (7b) and Ineq. (7d). We

now revert to the conditions of Theorem 1 by taking γ̃ = 0, so the aforementioned inequalities reduce

to Ineq. (7c) with γ̃ = 0, i.e., q̃1 ≥ q̃2 + p̃, as stated in the theorem.

Hence, if Ineq. (7c) with γ̃ = 0 holds, whenever Expert 1 reports his signal, the best response of

Expert 2 is to ignore his signal and report a1. Clearly, the converse is true. Suppose Expert 2 repeats

the action of Expert 1. Expert 1 receives 1 if he is correct and −1 is he is wrong, so he should report

his signal which has a higher probability to match the true state of the world.

In a Guided equilibrium, a2(a1, s2) = s2 except for a2(0, 1) = 0 so Ineq. (2), Ineq. (3) and

Ineq. (4) should hold while Ineq. (5) is reversed:

p̃+ q̃1 + q̃2 − γ̃ ≥ 0, (8a)

p̃+ q̃1 − q̃2 − γ̃ ≥ 0, (8b)

p̃− q̃1 + q̃2 + γ̃ ≥ 0, (8c)

p̃− q̃1 − q̃2 + γ̃ ≤ 0. (8d)

Note that Ineq. (8d) implies that Ineq. (8a) holds, and Ineqs. (8c) and (8b) are equivalent to γ̃ − p̃ ≤

q̃1 − q̃2 ≤ γ̃ + p̃. Since q2 ≥ p, one can show that Ineq. (8b) yields Ineq. (8d) as follows,

q̃1 + q̃2 ≥ q̃1 + p̃ ≥ γ̃ + q̃2 ≥ γ̃ + p̃.

So, one only needs to sustain the inequalities γ̃ − p̃ ≤ q̃1 − q̃2 ≤ γ̃ + p̃. Again, take γ̃ = 0, and Expert

2 follows the Guided equilibrium given that −p̃ ≤ q̃1 − q̃2 ≤ p̃, as stated in the theorem.

Suppose Expert 1 observes s1 = 0. By reporting a1 = 0, he guides the second expert to report

a2 = 0 as well. By reporting a1 = 1, the second expert would act according to his own signal.

Reporting a1 = 0 is better if and only if

pq1 ·1+(1−p)(1−q1)·(−1) ≥ pq1q2 ·(−α)+pq1(1−q2)·(−1)+(1−p)(1−q1)q2 ·1+(1−p)(1−q1)(1−q2)·α,

which is equivalent to
p

1− p
· q1
1− q1

≥ 1 + q2 + α− αq2
1 + q2α+ 1− q2

.

The last inequality holds since the LHS is bounded from below by 1 (recall that p, q1 ≥ 0.5), while the

RHS is bounded from above by 1 (since q2 ≥ 0.5 and α ≥ 1).

Now suppose Expert 1 observes s1 = 1. Reporting a1 = 1 is better if and only if

p(1−q1)q2 ·(−α)+p(1−q1)(1−q2)·(−1)+(1−p)q1(1−q2)·α+(1−p)q1q2 ·1 ≥ p(1−q1)·1+(1−p)q1 ·(−1),

22



which is equivalent to
q1

1− q1
· 1− p

p
≥ 2 + q2(α− 1)

1 + α+ q2(1− α)
,

or,

q̃1 − p̃ ≥ ln

(
2 exp(−q̃2) + α+ 1

(α+ 1) exp(−q̃2) + 2

)
,

as stated in the theorem.

In a Mixed equilibrium, the signal s1 = 0 yields a1 = 0, while s1 = 1 leads to a mixed

action (r, 1 − r) of Expert 1. Similarly, Expert 2 plays according to his own signal, a2 = s2, unless

(a1, s2) = (0, 1), a case in which he plays a Mixed action (ρ, 1− ρ).

We begin with an analysis of Expert 2’s actions. To shorten the exposition, we depict the conditions

that follow Ineqs. (2)-(5), adjusted to the Mixed-equilibrim strategies.

• If (a1, s2) = (0, 0), then a2 = 0 if and only if

pq2[q1+r(1−q1)]−(1−p)(1−q2)[q1r+(1−q1)] ≥ (1−p)(1−q2)α[q1r+(1−q1)]−pq2α[q1+r(1−q1)],

which reduces to p
1−p · q2

1−q2
≥ q1r+1−q1

q1+r(1−q1)
, and the last inequality evidently holds.

• If (a1, s2) = (1, 0), then a2 = 0 if and only if

αp(1− q1)q2(1− r)− α(1− p)q1(1− q2)(1− r) ≥ (1− p)q1(1− q2)(1− r)− p(1− q1)q2(1− r),

which reduces to q̃1 − q̃2 ≤ p̃, and stated in the theorem.

• If (a1, s2) = (1, 1), then a2 = 1 if and only if

(1− p)q1q2(1− r)− p(1− q1)(1− q2)(1− r) ≥ αp(1− q1)(1− q2)(1− r)− α(1− p)q1q2(1− r),

which reduces to q̃1 + q̃2 ≥ p̃.

• If (a1, s2) = (0, 1), then Expert 2 plays a Mixed action if and only if

p(1−q2)[q1+(1−q1)r]−(1−p)q2[q1r+(1−q1)] = α(1−p)q2[q1r+(1−q1)]−αp(1−q2)[q1+r(1−q1)],

which reduces to r = (1−p)(1−q1)q2−pq1(1−q2)
p(1−q1)(1−q2)−(1−p)q1q2

. Note that r ∈ [0, 1] as long as p̃ ≤ q̃1 + q̃2 and

−p̃ ≤ q̃1 − q̃2, as stated in the theorem.
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Moving on to the actions of Expert 1, if s1 = 0 then a1 = 0 if and only if

pq1[1 + αq2 + (1− q2)(ρ+ (1− ρ)α)] ≥ (1− p)(1− q1)[1 + α(1− q2) + q2(ρ+ (1− ρ)α)],

which reduces to p
1−p ·

q1
1−q1

≥ 1+α+q2ρ(1−α)
1+αρ(1−q2)(1−α) , and the last inequality holds for any α ≥ 1 and ρ ∈ [0, 1].

In addition, if s1 = 1, then Expert 1 is indifferent between a1 = 0 and a1 = 1 if and only if

p(1− q1)[1 + α+ (1− q2)ρ(1− α)] = (1− p)q1[1 + αq2ρ(1− α)],

which yields ρ = 1+α
α−1 · (1−p)q1−p(1−q1)

(1−p)q1q2−p(1−q1)(1−q2)
. Note that ρ ∈ [0, 1] as long as

q̃1 − p̃ ≤ ln

(
2 exp(−q̃2) + α+ 1

(α+ 1) exp(−q̃2) + 2

)
,

as stated in the theorem. This concludes our proof.

Proof of Proposition 1. By definition, the correctness under a Herding equilibrium is q1, which

equals max{q1, q2} since q̃1 ≥ q̃2 + p̃. Similarly, the correctness under a Revealing equilibrium is

q2 = max{q1, q2}. So, let us consider a Guided equilibrium, in which a2 = s2 in case a1 = 1, and

a1 = 0 leads to a2 = 0. In other words, in a Guided equilibrium, Expert 2 deviates from his private

signal if and only if (a1, s2) = (0, 1). Thus,

C(q1, q2) = Pr(σ2 = θ|σ1)

= q2 + pq1(1− q2)− (1− p)(1− q1)q2

= pq2 + pq1 + q1q2 − 2pq1q2,

and the last expression is symmetric w.r.t. substituting q1 and q2. So, w.l.o.g., assume that q2 =

max{q1, q2}. Theorem 1 states that a Guided equilibrium implies that p̃ + q̃1 ≥ q̃2, or equivalently,

p
1−p · q1

1−q1
≥ q2

1−q2
, thus

C(q1, q2) = q2 + pq1(1− q2)− (1− p)(1− q1)q2 ≥ q2,

and the inequality is strict in case p
1−p · q1

1−q1
> q2

1−q2
, as needed.

Given a Mixed equilibrium, Expert 2 deviates from his private signal if and only if (a1, s2) = (0, 1).

Thus, the correctness is given by

C(q1, q2) = q2 + p(1− q2)[q1 + (1− q1)r][ρ− (1− ρ)] + (1− p)q2[q1r + (1− q1)][(1− ρ)− ρ]

= q2 + (2ρ− 1){p(1− q2)[q1 + (1− q1)r]− (1− p)q2[q1r + (1− q1)]} = q2,
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where the last inequality follows from Expert 2’s indifference condition

(1 + α)p(1− q2)[q1 + (1− q1)r] = (1 + α)(1− p)q2[q1r + (1− q1)]

p(1− q2)[q1 + (1− q1)r] = (1− p)q2[q1r + (1− q1)]

given in Theorem 1.

Proof of Theorem 1∗. Fix p, q1, q2, and let us follows the cases as given in the theorem.

Assume that γ̃ < q̃1− q̃2− p̃. According to the proof of Theorem 1, a Herding equilibrium exists if

and only if γ̃ + p̃ < q̃1 − q̃2, which holds by assumption. Now, assuming that Expert 2 replicates the

action of Expert 1, a straightforward computation would show that the optimal action of Expert 1

is to follow his signal as well, independently of γ̃. Thus, a Herding equilibrium exists if and only if

γ̃ < q̃1 − q̃2 − p̃.

Moving on to the case where q̃1 − q̃2 − p̃ < γ̃ < q̃1 − q̃2 + p̃. These inequalities are equivalent to

Ineqs. (8b) and (8c), and according to the proof of Theorem 1, they imply that a Guided equilibrium

exists. Since, by assumption, Expert 1 follows his own signal, the equilibrium is also unique.

Lastly, assume that q̃1 − q̃2 + p̃ < γ̃ < q̃1 + q̃2 − p̃. Using the proof of Theorem 1, a Revealing

equilibrium exists if and only if Ineqs. (6b) and (6d) holds. Indeed, both inequalities hold under the

given parametric assumptions over γ̃. Moreover, similarly to the Herding analysis, the optimal action

of Expert 1 is a1 = s1, given that a2 = s2, and independently of γ̃. This establishes the existence of a

Revealing equilibrium and concludes our proof.

Proof of Proposition 2. Fix (q1, γ, p) so that q̃1 > γ̃ > p̃. We start by proving that there exist

q∗2 < q1 and ϵ1 > 0 such that for every q2 ∈ (q∗2 − ϵ1, q
∗
2) there exists a unique equilibrium, namely a

Guided one, and for every q2 ∈ (q∗2, q
∗
2 + ϵ1) there exists a unique equilibrium – a Revealing one.

Take q∗2 such that γ̃− p̃ = q̃1− q̃∗2. The condition q̃1 > γ̃ > p̃ implies that p < q∗2 < q1, and for every

sufficiently close q2 to q∗2 (from below), we get γ̃ < q̃1 − q̃2 + p̃, as needed for a Guided equilibrium

according to Theorem 1∗. In addition, since q∗2 < q1, then for every sufficiently close q2 to q∗2 (from

above), but still below q1, we get that q̃1− q̃2 < γ̃− p̃, as needed for a Revealing equilibrium according

to Theorem 1∗. Thus, one can fix ϵ1 ∈ (0,min{q1 − q∗2, q
∗
2 − p}), such that for every q2 ∈ (q∗2 − ϵ1, q

∗
2)

there exists a Guided equilibrium, and for every q2 ∈ (q∗2, q
∗
2 + ϵ1) there exists a Revealing equilibrium.
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Note that the assumption that Expert 1 follows his own signal in equilibrium, along with the fact that

the best response of Expert 2 in unique in each of these cases, suggest that the mentioned equilibria

are indeed unique.

The correctness of Expert 2 under a unique Revealing equilibrium is simply q2. Since q1 > q∗2

and given ϵ1 ∈ (0,min{q1 − q∗2, q
∗
2 − p}), it follows that q2 = min{q1, q2} is also the correctness of the

process under the aforementioned Revealing equilibrium. This observation deviates from Proposition

1, as the latter specifically relates to cases where γ̃ = 0, which entails that q2 ≥ q1 in a Revealing

equilibrium. On the other hand, the correctness under a Guided equilibrium is

C(q1, q2) = q2 + pq1(1− q2)− (1− p)(1− q1)q2.

Since p̃+ q̃1 − q̃∗2 = γ̃ > p̃, we deduce that pq1(1− q∗2) >
p

1−p(1− p)(1− q1)q
∗
2, which leads to

pq1(1− q∗2)− (1− p)(1− q1)q
∗
2 >

(
p

1− p
− 1

)
(1− p)(1− q1)q

∗
2.

Thus,

q∗2 + pq1(1− q∗2)− (1− p)(1− q1)q
∗
2 > q∗2[1 + (2p− 1)(1− q1)]

= q∗2[q1 + 2p(1− q1)]

> q∗2 + ϵ2

for every 0 < ϵ2 < q∗2[q1 + 2p(1 − q1) − 1]. By continuity, one can take a positive and sufficiently

small ϵ < min{ϵ1, ϵ2} such that C(q1, q2) = q2 + pq1(1 − q2) − (1 − p)(1 − q1)q2 > q∗2 + ϵ, for every

q2 ∈ (q∗2 − ϵ, q∗2).

Denote q2 = q∗2 + ϵ and q2 = q∗2 − ϵ. Thus, for every q2 ∈ (q2, q
∗
2), the correctness is strictly higher

than for every q′2 ∈ (q∗2, q2). That is, C(q1, q2) > C(q1, q
′
2), as stated in the theorem.

Proof of Proposition 3. Fix (γ, p, qH , qL) such that qH > qL, where q̃H − q̃L < p̃, and (q1, q2) =

(qH , qL) yields a Guided equilibrium with correctness

C(qH , qL) = qL + pqH(1− qL)− (1− p)(1− qH)qL

= qH + pqL(1− qH)− (1− p)(1− qL)qH > qH ,

where the first equality follows from the symmetry of the expression w.r.t. qH and qL, and the inequality

follows from the assumption that p̃+ q̃L > q̃H .
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Now consider (q1, q2) = (qL, qH). Following the proof Theorem 1 (to establish that there exists

a Revealing equilibrium), one needs to show that Ineq. (6b) and Ineq. (6d) hold. First, note that

Ineq. (8d) and Ineq. (6d) are identical, independently of the ordering of (q1, q1). So one only needs

to show that Ineq. (6b) holds, i.e., q̃L − q̃H ≤ γ̃ − p̃. This inequality follows from the fact that

γ̃ > p̃ and qH > qL. Thus, we established that a Revealing equilibrium exists, and its correctness is

C(qL, qH) = qH < C(qH , qL), as needed.
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